
1

Hands On Installation And
Configuration Of SUSE
CaaSP (with Automation!)

Session ID: HOL-1111

Dwain Sims dwain.sims@suse.com

Louis Paul louis.paul@suse.com

mailto:dwain.sims@suse.com

2

Agenda

1. Background and other stuff

2. Goals

3. Automation

4. Definitions

5. Let’s give it a try

3

Who The Heck Is This Guy?

Dwain is a Sales Engineer at SUSE working with
customers on Software Defined Everything. He has a
Master’s Degree in Computer Science and more than
30 years’ experience in working for companies such as
Lockheed, Sun Microsystems, SteelEye Technology,
Fusion-io and SanDisk. He is a frequent speaker at
Linux User’s Group meetings, the SouthEast Linux
Fest, SUSECon, and other events.

Dwain Sims

SUSE Sales Engineer

Raleigh, NC

4

Louis Paul

SUSE Cloud Architect

As a Cloud Solution Architect at SUSE, Louis responsibility lies on focusing on Cloud Native

Platforms and Application delivery. He worked with Enterprise systems and Development

platforms in the Financial/Wall Street arena for over 2 decades. He joined the HPE Cloud

team in 2016 working on Helion Stackato before its transition to SUSE to pursue

development of SUSE Application delivery solutions.

5

How Did This Session Come About?

6

Attribution

Brent Griggs, SUSE Services Team

Brent built the first version of this using SUSE Container as a Service

Platform V3. I first saw it in November 2018. I modified it to handle CaaSP

V4 (which is pretty different!)

7

Goals For Today!

Understand the automation!

Build a Kubernetes Cluster using the automation!

Do some basic things with the Cluster.

Run a couple of Applications in the Cluster.

If time, tear it down and build it again.

8

Automation

Main Goal: Build a working CaaSP / Kubernetes Cluster

on a KVM Host.

9

Definitions

• CaaSP

• Container as a Service Platform

• Currently on V4.1

• Kubernetes 1.16

• A fully curated and supported distribution of the Kubernetes container orchestration system.

• Runs on top of SLE 15.1

• Based on the upstream project https://kubic.opensuse.org/

https://kubic.opensuse.org/

10

Definitions

• CAP

• Cloud Application Platform

• Cloud Foundry Implementation

• Cloud Foundry Certified

• CAP runs on Kubernetes!

• Practically any Kubernetes…including CaaSP.

11

Definitions

• Helm / Tiller

• Package Manager for Kubernetes

• Helm – runs on your client system.

• Tiller – runs on the Kubernetes Cluster

• https://helm.sh/

https://helm.sh/

12

Definitions

• Metal Load Balancer (MetalLB)

• Load Balancing for Simple Kubernetes Configurations

• Kubernetes assumes more complex networking (typically Cloud based) networking

• Easy way for Kubernetes to assign external IP addresses to Services

• https://metallb.universe.tf/

https://metallb.universe.tf/

13

Definitions

• Stratos

• Web based UI for both CAP and CaaSP

• Now part of the Upstream Cloud Foundry

• New management features for Kubernetes

• Can manage practically any Cloud Foundry implementation.

• Easy access to the Kubernets Dashboard

14

Definitions

• Kubernetes Dashboard

• Web based UI for Kubernetes

• Moving from V1 to V2 (V2

required for Kubernetes 1.16)

• Not officially supported by SUSE

• Can do most of the things you

would do from the command line

with Kubernetes Dashboard

15

What Are We Trying To Do?

• Build a working 3 node Kubernetes Cluster on KVM host.

• 1 Kubernetes Master

• 2 Kubernetes Workers

• You also need an “Admin” node to run the CaaSP installation from.

• Nodes connected by a private virtual network – “caaspnet”

• Defines the DHCP services for the network

• Assigns IP addresses via DHCP to the cluster nodes

16

Where Can I Find This?

• Everything is Open Source!

• Of Course, it’s the SUSE Way!

• All the source is on Gitlab

• https://gitlab.com/dmsims/caasp4-kvm.git

17

What Does The KVM Host Provide?

• Essential Services to the Kubernetes Cluster

• NFS Server - Kubernetes Cluster Storage

• NFS Serving of the Autoyast files

18

Autoyast

• Two separate Autoyast files

• adminautoyast.xml

• autoyast.xml

• You need to modify these files for your configuration.

• Registration Code and Login email

• Password

• Authorized Keys (to allow easy login!)

19

“caaspinstRC.sh”

This script defines all of the alias commands that you will use to create the admin

and Kubernetes nodes.

Per the instructions in the README.txt (step 2) ‘source’ this file to make the alias

definitions.

You can edit caaspinstRC.sh if you need to make modification (i.e. memory

usage) for the various VMs that will get created. The defaults will work for most.

The alias “installmaster” (etc) creates the VM and points to the autoyast file to

help define the needed values. “Hands off!”

20

Other Scripts

“newadmin”

Used to setup a newly created admin VM

Copies all of the keys and scripts to the admin node

“buildcluster”

Will be run from the admin VM

Actually runs the skuba commands that set up the CaaSP cluster.

21

“configcluster”

Lots going on here!

“buildcluster” gets you a Kubernetes cluster. “configcluster” makes the Kubernetes cluster

into something that can do some semi-real work.

Installs Helm/Tiller into the cluster

Installs MetalLB (Metal Load Balancer) so you have a working cluster network service.

Installs “nfs-client” (via Helm) into the cluster so that you can use the NFS server (KVM

host) as storage for the cluster. (You could likely use other NFS Servers as well.)

Installs Stratos (via Helm) (with easy access to the Kubernetes Dashboard)

22

Run Some Apps In The Kubernetes Cluster

• Stratos

• Great example of a cluster app. Deploys with Helm, and (in our case) gets an IP address from Metal LB.

• Nginx

• Super simple demo of a web server running in a container

• Deployed as a “Replication Controller” resource in v1.16

• This one deploys manually

• Microsoft SQL Server

• Bonus app if you have time.

• SQL Server running in a Linux Container!

23

Lets get started!!!

24

General Disclaimer

This document is not to be construed as a promise by any participating company to

develop, deliver, or market a product. It is not a commitment to deliver any material,

code, or functionality, and should not be relied upon in making purchasing

decisions. SUSE makes no representations or warranties with respect to the contents of

this document, and specifically disclaims any express or implied warranties of

merchantability or fitness for any particular purpose. The development, release, and

timing of features or functionality described for SUSE products remains at the sole

discretion of SUSE. Further, SUSE reserves the right to revise this document and to

make changes to its content, at any time, without obligation to notify any person or entity

of such revisions or changes. All SUSE marks referenced in this presentation are

trademarks or registered trademarks of SUSE, LLC, Inc. in the United States and other

countries. All third-party trademarks are the property of their respective owners.

